1School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
2College of Land Science and Technology, China Agricultural University, Beijing 100094, China
3The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
4Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4350, Australia
5These authors contributed equally to this work
Received 06 Apr 2023 |
Accepted 26 Aug 2023 |
Published 28 Sep 2023 |
Observable morphological traits are widely employed in plant phenotyping for breeding use, which are often the external phenotypes driven by a chain of functional actions in plants. Identifying and phenotyping inherently functional traits for crop improvement toward high yields or adaptation to harsh environments remains a major challenge. Prediction of whole-plant performance in functional–structural plant models (FSPMs) is driven by plant growth algorithms based on organ scale wrapped up with micro-environments. In particular, the models are flexible for scaling down or up through specific functions at the organ nexus, allowing the prediction of crop system behaviors from the genome to the field. As such, by virtue of FSPMs, model parameters that determine organogenesis, development, biomass production, allocation, and morphogenesis from a molecular to the whole plant level can be profiled systematically and made readily available for phenotyping. FSPMs can provide rich functional traits representing biological regulatory mechanisms at various scales in a dynamic system, e.g., Rubisco carboxylation rate, mesophyll conductance, specific leaf nitrogen, radiation use efficiency, and source–sink ratio apart from morphological traits. High-throughput phenotyping such traits is also discussed, which provides an unprecedented opportunity to evolve FSPMs. This will accelerate the co-evolution of FSPMs and plant phenomics, and thus improving breeding efficiency. To expand the great promise of FSPMs in crop science, FSPMs still need more effort in multiscale, mechanistic, reproductive organ, and root system modeling. In summary, this study demonstrates that FSPMs are invaluable tools in guiding functional trait phenotyping at various scales and can thus provide abundant functional targets for phenotyping toward crop improvement.